虚拟组分-人工神经网络用于中药紫外光度法中多组分的同时测定  被引量:8

Simultaneous Determination of Multi-Components in Chinese Herbal Medicine with UV Spectrometry by Virtual Components-Artificial Neural Network

在线阅读下载全文

作  者:白立飞[1] 张海涛[1] 张寒琦[1] 王红霞[1] 王洪艳[1] 

机构地区:[1]吉林大学化学学院,吉林长春130012

出  处:《光谱学与光谱分析》2007年第1期126-130,共5页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(30371757);吉林省科技厅项目(20030551-7)资助

摘  要:采用虚拟组分自修正、自拟合的方法消除了干扰组分的影响,实现了人工神经网络(ANN)-紫外分光光度法不经分离的中药多组分浓度的同时测定。建立了包含训练网络和拟合网络的双网络ANN算法,提高了ANN算法的自学习、自判别能力,使复杂中草药体系多组分浓度预报的准确度大大提高。对21种不同来源的秦皮中秦皮甲素和秦皮乙素的含量进行了预测,预测结果与HPLC法相比较,以相对误差小于10%计,预测准确率大于90%。该法对秦皮甲素和秦皮乙素的测定精密度分别为0.37%,1.5%。In the present paper, the simultaneous determination of multi-components in Chinese herbal medicine was performed by artificial neural network-UV spectrometry. The interference of other components was eliminated by self-revising and self-simulation of the virtual component. The double ANN including training and simulation network was established, and the capabilities of self-recognition and self-studying were improved. Therefore, the prediction accuracy of multicomponent content was improved greatly in the complicated Chinese herbal medicine system. The contents of aesculin and aesculetin, which were extracted from 21 Cortex Fraxinis, were predicted. Comparing the results with those of HPLC, the prediction accuracy was more than 90% within the relative errors less than 10%. The measurement preeisions of aeseulin and aeseuletin were 0. 37% and 1.5% respectively.

关 键 词:人工神经网络 虚拟组分 秦皮甲素 秦皮乙素 

分 类 号:O657.3[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象