检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN Chao TIAN YuanXin ZOU XiaoYong CAI PeiXiang MO JinYuan
机构地区:[1]School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
出 处:《Chinese Science Bulletin》2007年第3期318-323,共6页
基 金:the National Natural Science Foundation of China (Grant Nos. 20475068 and 20575082);the Natural Science Foundation of Guangdong Province (Grant No. 031577);the Scientific Technology Project of Guangdong Province (Grant No. 2005B30101003)
摘 要:By integrating the cooperative approach with the fast annealing coevolutionary algorithm (FAEA), a so-called cooperative fast annealing coevolutionary algorithm (CFACA) is presented in this paper for the purpose of solving high-dimensional problems. After the partition of the search space in CFACA, each smaller one is then searched by a separate FAEA. The fitness function is evaluated by combining sub-solutions found by each of the FAEAs. It demonstrates that the CFACA outperforms the FAEA in the domain of function optimization, especially in terms of convergence rate. The current algorithm is also applied to a real optimization problem of protein motif extraction. And a satisfactory result has been obtained with the accuracy of prediction achieving 67.0%, which is in agreement with the result in the PROSITE database.By integrating the cooperative approach with the fast annealing coevolutionary algorithm (FAEA), a so-called cooperative fast annealing coevolutionary algorithm (CFACA) is presented in this paper for the purpose of solving high-dimensional problems. After the partition of the search space in CFACA, each smaller one is then searched by a separate FAEA. The fitness function is evaluated by combining sub-solutions found by each of the FAEAs. It demonstrates that the CFACA outperforms the FAEA in the domain of function optimization, especially in terms of convergence rate. The current algorithm is also applied to a real optimization problem of protein motif extraction. And a satisfactory result has been obtained with the accuracy of prediction achieving 67.0%, which is in agreement with the result in the PROSITE database.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63