扁柱面网壳的非线性动力学行为  被引量:8

Nonlinear Dynamical Behavior of Shallow Cylindrical Reticulated Shells

在线阅读下载全文

作  者:王新志[1] 梁从兴[1] 韩明君[1] 叶开沅[2] 王钢[3] 

机构地区:[1]兰州理工大学理学院,兰州730050 [2]兰州大学物理学院,兰州730000 [3]兰州理工大学设计艺术学院,兰州730050

出  处:《应用数学和力学》2007年第2期135-140,共6页Applied Mathematics and Mechanics

基  金:甘肃省自然科学基金资助项目(3Zs042-B25-006)

摘  要:用连续化法建立了正三角形网格的三向单层扁柱面网壳的非线性动力学方程和协调方程.在两对边简支条件下用分离变量函数法给出扁柱面网壳的横向位移.由协调方程求出张力,通过Galerkin作用得到了一个含二次、三次的非线性动力学微分方程.通过求Floquet指数讨论平衡点邻域的稳定性,用复变函数留数理论求出Melnikov函数,可得到该动力学系统发生混沌运动的临界条件.通过数值计算模拟和Poincaré映射也证明了混沌运动存在.By using the method of quasi-shells, the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral trireme cell were founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells were given under the conditions of two edges simple support. The tensile force was solving from the compatible equations, a nonlinear dynamic differential equation containing the second and third order is derived by using the method of Galerkin. The stability near the equilibrium point was discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. Existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincaré mapped.

关 键 词:网壳 连续法 混沌 临界条件 

分 类 号:O343.5[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象