检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国国土资源航空物探遥感中心,北京100083
出 处:《国土资源遥感》2007年第1期1-9,共9页Remote Sensing for Land & Resources
基 金:国家高技术研究发展计划(863计划)课题"成像光谱矿物填图技术及其应用示范"(2001AA36020-4);中国地质调查局科研项目"成像光谱技术在资源勘查中的应用研究"(200220140003)。
摘 要:矿物识别和矿物填图是成像光谱应用最成功的领域之一。本文将国内外发展的矿物识别模型归纳为光谱匹配和以知识为基础的智能识别两大类型进行讨论。对光谱匹配方法分别从其方法的分类、光谱相似性测度、整体光谱匹配算法、局部光谱识别、亚像元光谱识别、混合像元分解和矿物端元选择、光谱减维和噪声弱化等方面作了评述。最后,讨论了矿物识别和填图研究中存在的主要问题,指出研究建立全谱段矿物识别方法和技术体系将是今后光谱矿物识别和矿物填图的重要发展方向。Mineral identification and mineral mapping constitute one of the most successful field in the application of imaging spectra. This paper has classified the spectral identification techniques and identification models of minerals into two types : one is the spectral matching of rebuilt spectral data with standard spectra or measured spectra based on spectral similarity measure, while the other is the knowledge - based or intelligent methods based on mineralogical and mineral spectral knowledge. The classification of spectral matching, spectral similarity measure, whole spectral matching, partial spectral matching, sub- pixel identification, spectral un- mixing, end -member selection and dimensional reduction are analyzed and reviewed. The existent problems and research tendency in spectral mineral mapping are also discussed. The development of the identification technology by using whole spectral region from visible to middle and thermal infrared domain seems to be one of the most important trends in spectral mineral identification and mineral mapping.
关 键 词:成像光谱 矿物识别 矿物填图 光谱匹配 光谱相似性测度 全谱段
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147