检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]炮兵学院,安徽合肥230031
出 处:《火力与指挥控制》2007年第3期8-11,共4页Fire Control & Command Control
基 金:国家自然科学基金资助项目(60575001);国家重大基础项目(2004CB318103)
摘 要:SVM是一种理论依据充分的机器学习新算法,主要用于对有限个样本的分类识别和回归建模。将一条弹道视为一个训练样本,利用SVM回归方法在不同弹道之间归纳弹道落点的规律,从而可以对未知弹道的落点进行预测。将SVM引入弹道外推是重要创新,构建具有代表性的训练样本,以及统一样本空间维数等是技术创新。仿真实验表明,SVM可以提高弹道外推精度,同时缩短外推时间。SVM is a new machine learning method with sufficient theoretical motivation, and it is mainly used for classification recognition and regression modeling in terms of finite samples. In this paper, each trajectory is viewed as a training sample, and SVM regression method is applied to induce the law of the trajectory falling points. Therefore, the falling points can be predicted. One of the most important contribution in this paper is that we introduce SVM into the field of trajectory extrapolation of radar,and the another contribution lies in we apply SVM using many techniques, which includes constructing representative samples and unifying the dimension of input space. The simulation experiments demonstrate that SVM can improve the accuracy of trajectory prediction while reduce the prediction time.
分 类 号:TJ012.3[兵器科学与技术—兵器发射理论与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229