基于支持向量机的音字转换模型  被引量:6

Pinyin-to-Character Conversion Model Based on Support Vector Machines

在线阅读下载全文

作  者:姜维[1] 关毅[1] 王晓龙[1] 刘秉权[1] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001

出  处:《中文信息学报》2007年第2期100-105,共6页Journal of Chinese Information Processing

基  金:国家自然科学基金重点项目资助(60435020);国家自然科学基金项目资助(60504021)

摘  要:针对N-gram在音字转换中不易融合更多特征,本文提出了一种基于支持向量机(SVM)的音字转换模型,有效提供可以融合多种知识源的音字转换框架。同时,SVM优越的泛化能力减轻了传统模型易于过度拟合的问题,而通过软间隔分类又在一定程度上克服小样本中噪声问题。此外,本文利用粗糙集理论提取复杂特征以及长距离特征,并将其融合于SVM模型中,克服了传统模型难于实现远距离约束的问题。实验结果表明,基于SVM音字转换模型比传统采用绝对平滑算法的Trigram模型精度提高了1.2%;增加远距离特征的SVM模型精度提高1.6%。In order to overcome the difficulty in fusing more features into n-gram, a Pinyin-to-Character conversion model based on Support Vector Machines (SVM) is proposed in this paper, providing the ability of integrating more statistical information. Meanwhile, the excellent generalization performance effectively overcomes the overfitting problem existing in the traditional model, and the soft margin strategy overcomes the noise problem to some extent in the corpus. Furthermore, rough set theory is applied to extract complicated and long distance features, which are fused into SVM model as a new kind of feature, and solve the problem that traditional models suffer from fusing long distance dependency. The experimental result showed that this SVM Pinyin-to-Character conversion model achieved 1.2% higher precision than the trigram model, which adopted absolute smoothing algorithm, moreover, the SVM model with long distance features achieved 1.6 % higher accuracy.

关 键 词:人工智能 自然语言处理 支持向量机 音字转换 粗糙集理论 远距离特征 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象