改进遗传算法的无功优化  被引量:4

Reactive Power Optimization Based on Improved Genetic Algorithm

在线阅读下载全文

作  者:陈延枫[1] 王浩青[1] 贺军荪[1] 毕潇昳[1] CHEN Yan-feng, WANG Hao-qing, HE Jun-sun, BI Xiao-yi (Northwest Electrical Stuff Training Center, Xi'an 710054, China)

机构地区:[1]西北电力职工培训中心,西安710054

出  处:《西北水力发电》2007年第1期5-8,共4页Journal of Northwest Hydroelectric Power

摘  要:电力系统实现无功优化控制是保证系统电压质量、降低网损的重要措施。对于高维、非线性和连续变量与离散变量共存的电力系统无功优化数学模型,对一般遗传算法的无功优化算法在遗传操作过程中,进行了“灾变”,在选择操作中将轮盘赌和竞标赛方法相结合,对交叉变异算子根据每代个体的实际状况进行自适应调整。通过IEEE30节点算例表明了本文方法可有效提高每代种群的多样性,从而提高了一般遗传算法的无功优化的收敛速度和全局优化特性。Reactive power optimization is an effective method for improving the electricity quality and reducing the power loss in power system. Reactive power optimization is a higher dimensional, nonlinear and complicated optimizing problem, in which continuous and discrete variables coexist, this article presents "cataclysmic GA",combining the "Roulette Wheel" and "Tournament". Self-adaptive adjusting operators in GA based on the number of iterate and performance of units, speeds up the convergence. The IEEE30 power system, are taken in optimization. The results of the optimization demonstrate that the method presented by this article can improve general GA's performance.

关 键 词:无功优化 遗传算法 灾变 自适应 

分 类 号:TM76[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象