检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张利彪[1] 周春光[1] 马铭[1] 孙彩堂[1]
机构地区:[1]吉林大学计算机科学与技术学院,长春130012
出 处:《计算机研究与发展》2007年第1期177-184,共8页Journal of Computer Research and Development
基 金:国家自然科学基金重点项目(60433020);吉林大学"九八五"工程"计算与软件科学"科技创新平台基金项目;教育部"符号计算与知识工程"重点实验室基金项目(02090)
摘 要:微分进化(differential evolution)是一种新的简单而有效的直接全局优化算法,并在许多领域得到了成功应用.提出了基于极大极小距离密度的多目标微分进化算法.新算法定义了极大极小距离密度,给出了基于极大极小距离密度的Pareto候选解集的维护方法,保证了非劣解集的多样性.并根据个体间的Pareto支配关系和极大极小距离密度改进了微分进化的选择操作,保证了算法的收敛性,实现了利用微分进化算法求解多目标优化问题.通过对5个ZDT测试函数、两个高维测试函数的实验及与其他多目标进化算法的对比和分析,验证了新算法的可行性和有效性.Differential evolution is a simple and powerful globally optimization new algorithm. It is a population-based, direct search algorithm, and has been successfully applied in various fields. A multi- objective differential evolution algorithm based on max-min distance density is proposed. The algorithm proposed defines max-min distance density and gives a Pareto candidate solution set maintenance method, ensuring the diversity of the Pareto solution set. Using Pareto dominance relationship among individuals and max-min distance density, the algorithm improves the selection operation of differential evolution, ensures the convergence of the algorithm, and realizes the solution of multi-objective optimization problems by differential evolution. The proposed algorithm is applied to five ZDT test functions and two high dimension test functions, and it is also compared with other multi-objective evolutionary algorithms. Experimental result and analysis show that the algorithm is feasible and efficient.
关 键 词:微分进化 极大极小距离密度 多目标优化问题 多目标进化算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3