Transferring a Gene Expression Cassette Lacking the Vector Backbone Sequences of the 1Ax1 High Molecular Weight Glutenin Subunit into Two Chinese Hexaploid Wheat Genotypes  被引量:6

Transferring a Gene Expression Cassette Lacking the Vector Backbone Sequences of the 1Ax1 High Molecular Weight Glutenin Subunit into Two Chinese Hexaploid Wheat Genotypes

在线阅读下载全文

作  者:SHI Nong-nong HE Guang-yuan LI Ke-xiu WANG Hui-zhong CHEN Guan-ping XU Ying 

机构地区:[1]Key Laboratory of Molecular Biology and Biochemistry of Hangzhou City, School of Life and Environmental-Sciences, Hangzhou Normal University, Hangzhou 310018/China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, Huazhong University of Science and Technology, Wuhan 430070, P.R.China/Division of Crop Performance & Improvement, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK

出  处:《Agricultural Sciences in China》2007年第4期381-390,共10页中国农业科学(英文版)

基  金:supported by China Post-Doctorial Foundation(2002031255);Rothamsted International Foundation(2002)of the UK;Natural Science Foundation of Zhejiang Province,China(M303081).

摘  要:1Ax1 high molecular weight glutenin subunit (HMW-GS) gene expression cassette (GEC) lacking vector backbone sequences together with selectable marker Bar GEC were co-transformed into Chinese hexaploid cultivars Een 1 and Emai 12 to test the feasibility and the efficiency of explant regeneration, transformation frequency and transgene expression comparing with whole vector transformation by the approaches of plasmid extraction and excision, immature embryo isolation, particle co-bombardment, tissue culture, DNA extraction, PCR amplification, southern hybridization, leaf-painting test and SDS-PAGE etc. No significant difference was shown in tissue culture response of the proportion of embryogenic calli, somatic embryogenesis and regeneration frequency between GEC and whole plasmid bombarded embryos, but both regenerated less well than non-bombarded control. Total 56 plantlets that survived PPT selection had insertion of at least the Bar gene, 18 were from the GEC treatment and 38 from the whole plasmid treatment, the escape ratio averaged 0.23. Six independent transplants f230 - f235 with GEC transformation from genotype Emai 12 presented clear PCR amplification bands of Bar and 1Ax1 gene. The transformation and co-transformation frequency were 3.51 and 100% respectively. PCR amplification using a primer-pair specific for ampicillin resistant gene indicated the existence of Amp^R gene in whole vectors but the removal in GECs and transplants. Southern blot of total DNA and PCR products from transgenic plants of 1Ax1 GEC confirmed the integration of the transgene 1Ax1 and the absence of the EcoR Ⅰ recognition site at both ends of the 1Ax1 GEC when integrated. SDS-PAGE showed the expression of 1Ax1 GEC and un-expression of whole plasmid. The length of integrated fragment, the proportion of the gene of interest (GOI) and the selectable marker (MG), bombardment pressure and genotypes are vital for the expression of a transformed GEC.1Ax1 high molecular weight glutenin subunit (HMW-GS) gene expression cassette (GEC) lacking vector backbone sequences together with selectable marker Bar GEC were co-transformed into Chinese hexaploid cultivars Een 1 and Emai 12 to test the feasibility and the efficiency of explant regeneration, transformation frequency and transgene expression comparing with whole vector transformation by the approaches of plasmid extraction and excision, immature embryo isolation, particle co-bombardment, tissue culture, DNA extraction, PCR amplification, southern hybridization, leaf-painting test and SDS-PAGE etc. No significant difference was shown in tissue culture response of the proportion of embryogenic calli, somatic embryogenesis and regeneration frequency between GEC and whole plasmid bombarded embryos, but both regenerated less well than non-bombarded control. Total 56 plantlets that survived PPT selection had insertion of at least the Bar gene, 18 were from the GEC treatment and 38 from the whole plasmid treatment, the escape ratio averaged 0.23. Six independent transplants f230 - f235 with GEC transformation from genotype Emai 12 presented clear PCR amplification bands of Bar and 1Ax1 gene. The transformation and co-transformation frequency were 3.51 and 100% respectively. PCR amplification using a primer-pair specific for ampicillin resistant gene indicated the existence of Amp^R gene in whole vectors but the removal in GECs and transplants. Southern blot of total DNA and PCR products from transgenic plants of 1Ax1 GEC confirmed the integration of the transgene 1Ax1 and the absence of the EcoR Ⅰ recognition site at both ends of the 1Ax1 GEC when integrated. SDS-PAGE showed the expression of 1Ax1 GEC and un-expression of whole plasmid. The length of integrated fragment, the proportion of the gene of interest (GOI) and the selectable marker (MG), bombardment pressure and genotypes are vital for the expression of a transformed GEC.

关 键 词:Triticum aestivum L. HMW-GS 1Ax1 gene expression cassette transformation frequency expression 

分 类 号:S512.103[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象