检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《物理化学学报》2007年第4期543-548,共6页Acta Physico-Chimica Sinica
基 金:国家自然科学基金(20473011);北京科技大学(00007414);教育部留学基金(11140036)资助项目
摘 要:利用Harris模型,详细分析了Mazziotti提出的重构方法和Chen提出的一种由低阶约化密度矩阵重构高阶约化密度矩阵的系统方法(Sciencein China B,2006,49:402)的差异.如果忽略Mazziotti方法中的^3△M、^4△M和Chen方法中的^3△M、^4△M计算结果显示两种方法的计算误差相近.更好的近似是只忽略四级项^4△M、^4△M而三级项由相应的四级项通过简缩来计算.采用Mazziotti方法计算出来的有些近似值和精确值连正负号都不同,而用Chen方法计算出来的近似值和精确值不仅正负符号一致,而且数值大小也很接近.The effectiveness of the approach for systematical reconstruction of higher order reduced density matrices with lower order ones, which was developed by Chen (Science in China B, 2006, 49: 402), was compared theoretically with that of Mazziotti's method through Harris model. In the case of omitting the cumulant terms ^3△M,^4△M in the latter and the normal product terms ^3△M,^4△M in the former, it was found that the errors from both approaches were comparable. As a better approximation, if only fourth-order terms ^4△Mand^4△M in both methods are neglected whereas the third-order terms ^3△M and ^3△ are computed from their corresponding fourth-order terms ^4△M and^4△M respectively through contractions, the results calculated with Chen's approach not only have the correct signs but also are very close to the exact normal products ^3△ whereas some of the results calculated with Mazziotti's method do not even have the correct signs with respect to the exact cumulants ^3△M.
关 键 词:约化密度矩阵 简缩Schrodinger方程 正规乘积 累计量
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.245