检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵勇[1]
机构地区:[1]四川师范大学数学与软件科学学院,四川成都610066
出 处:《广西科学》2007年第1期6-10,共5页Guangxi Sciences
基 金:四川省学位委员会资助;四川省教育厅重点学科建设基金项目资助。
摘 要:运用群系理论讨论Sylow子群的极大子群和Sylow子群的二次极大子群,以及极小子群对有限群结构的影响.得到(1)设G是与A4无关的有限群,P是G的最小素因数,F是包含Np的群系,则G∈F的充要条件为G存在一个正规子群,使得G/H∈F且H的Sylowp-子群的二次极大子群在G中C-可补;(2)设F是非空子群闭的局部群系,G是有限群,p是G的最小素因数且GF是可解,那么G∈FG存在正规子群N使得G/N∈F且对于P∈Sylp(N),P∩GF的22阶循环子群在G中C-可补且极小子群皆包含在ZF∞(G)中.The C -supplement condition on the maximal subgroup or the second maximal subgroup of Sylow subgroup and the minimal subgroup of G are used to study the structure of G by the theory of formations. The following results are obtained. (1)Let G be a finite group which is A4 -free and F- be a formation containing Np ,where p is the smallest prime number dividing | G|. Then G ∈F, and there exists a normal subgroup H of G such that G/H∈F and the second maximal subgroup of Sylow p- subgroup of H is C- supplement in G. (2)Let F be non-empty and subgroup-closed formation, G be a finite group and G^F is solvable. Then G∈F,and there exists a normal subgroup N of G such that G/N∈F, and for p ∈ Sylp (G), the subgroups of prime order and the subgroup of order 4 are contained in Z∞^F(G). The result above generalizes some known ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.198.191