检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李杨[1] 李晓明[1] 黄玲[1] 陈岭[1] 舒欣[1]
出 处:《华中电力》2007年第2期1-4,8,共5页Central China Electric Power
摘 要:综合考虑到温度、日期类型和天气等因素对短期电力负荷的影响,提出了一种将人工神经网络(ANN)RBF模型和模糊逻辑相结合的短期负荷预测方法。该方法将电力负荷分为周期性的基本负荷和受多种因素影响的变动负荷两部分,对于周期负荷用ANN进行预测,采用负荷预测中比较精确的RBF算法;变动负荷采用模糊逻辑对天气因素、温度、日期类型分别做不同的模糊处理,然后利用模糊推理规则对基本负荷预测结果进行修正。通过典型算例与普通BP法预测结果相比较,结果表明该方法具有较高的预测精度。In order to consider the factors such as temperature,date type,weather status and etc which influence the short-term electric load forecasting, this paper provides a method based on radial basis function neural network combined with fuzzy logic. Short-term system load can be subdivided into periodic basic load and variable load influenced by number of factors. ANN is used to forecast the periodic load, here we adopt the R.BF model which is relative precise in load forecasting;, we use fuzzy logical to give different fuzzy deals to the weather factor temperature and date-types, then update the elementary result of load forecasting with the fuzzy reasoning rules. By Comparing between typical example and usual forecasting result by BP model, the result indicates that this method has high accuracy and some factual values.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147