检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郁志宏[1] 王春光[1] 张晓芳[1] 张莉[1]
机构地区:[1]内蒙古农业大学机电工程学院,内蒙古呼和浩特010018
出 处:《计算机工程与设计》2007年第2期427-429,共3页Computer Engineering and Design
基 金:内蒙古自然科学基金项目(200408020809)
摘 要:提出了一种基于改进粒子群神经网络进行孵化种蛋成活性自动检测的方法。提取HSI图像的H分量作为孵化种蛋表面颜色特征,通过主成分分析,找到了6个主成分特征向量,减少了神经网络输入节点数。利用改进粒子群算法优化多层前馈神经网络的拓扑结构,提高了神经网络的学习质量和速度。训练集的样本具有足够代表性和全面性,提高了网络的泛化能力。实验证明,该方法检测准确性较高,具有鲁棒性和高效率。An improved particle swarm optimization neural network for automatic detection fertility of hatching eggs is presented. RGB images of eggs are obtained using computer vision technique, and are converted into HSI color images. Hue values of the images are extracted as the related feature of egg's surface. The primary components of feature parameters are extracted and selected using primary component analysis (PCA). Structure of multi-layer feedback forward neural network is optimized using an improved particle swarm optimization algorithm. Learning quality and training speed of the neural network are improved. The samples of network training are representative and comprehensive, it improved generalization ability ofthe neural network. The experimental results show that the neural network model for fertility of hatching eggs detection had a high accuracy and efficiency and the algorithm was robust.
关 键 词:改进粒子群算法 神经网络 主成分分析 孵化种蛋 成活性检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112