核的最近邻算法及其仿真  被引量:5

Kernel nearest neighbor rule and its application in intrusion detection

在线阅读下载全文

作  者:饶鲜[1] 杨绍全[1] 魏青[1] 董春曦[1] 

机构地区:[1]西安电子科技大学电子对抗研究所,陕西西安710071

出  处:《系统工程与电子技术》2007年第3期470-471,共2页Systems Engineering and Electronics

基  金:"十五"军事通迅预研基金资助课题(41001040303)

摘  要:为了提高近邻法的分类性能,提出了核的最近邻算法。通过mercer核,将样本映射到高维特征空间,再用近邻法分类。核映射改善了样本的空间分布,突显了样本的类别特征,从而提高了分类的性能。给出了核近邻算法的判决过程。对于人工数据和入侵检测数据的仿真显示,核近邻分类方法的分类性能优于传统的最近邻分类法。In order to improve the classification ability of the nearest neighbor rule, a kernel nearest neighbor rule is presented. Using the mercer kernel, the samples are mapped to high dimensional feature space, and are classified there. By kernel mapping, the distribution of samples is improved, and the features of samples are stand out. Thus the performance of the kernel nearest neighbor rule is improved. The process of discrimination using kernel nearest neighbor rule is given. The simulation results using both sysnthesized data and intrusion detection data show that the KNN rule has better performance than the NN rule.

关 键 词:模式识别 核方法 近邻法 入侵检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象