检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与工程系
出 处:《计算机学报》1997年第2期133-138,共6页Chinese Journal of Computers
摘 要:机器学习和模式识别面临的一个重要问题,就是特征子集的选择问题,即从一个大的已知特征集合,选择一个子集合来一致地描述已知例子(样本).特别,最优特征子集选择问题,即最小的特征子集问题的计算复杂性至今还不清楚.在本文中,作者证明了最优特征子集问题是NP难题,并给出它的一个启发式算法.Machine learning and pattern recognition are confronted with the difficulty in selecting subset of features. That is,from a large set of candidate features, selecting a subset of features which are able to represent given examples (samples) consistently. Especially,the problem of finding an optimal subset of features has remained open. This paper, proves that the problem of finding an optimal subset of features is NP-hard, and presents a heuristic algorithm to solve this problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143