检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《电子测量与仪器学报》2007年第2期26-30,共5页Journal of Electronic Measurement and Instrumentation
摘 要:人工神经网络是特征识别的有力工具。在研究对驻极体麦克图像识别方法的基础上,本文提出了一种用改进的BP神经网络进行图像特征的识别和学习算法,并给出了动量系数和学习率的调整方法。对比传统方法测定的结果,使用改进的BP神经网络在识别不规则特征时:减少了输入信息冗余,网络结构相对简单;神经网络输出的各项指标明显提高了精度,对麦克图像特征的平均识别正确率达到92.7%;识别速度也满足在线实时检测的要求。理论分析和实验均表明该算法能实时有效地检测出驻极体麦克图像的特性。本文为研究图像不规则特征的识别提供了一种新的方法。Artificial neural network is a powerful tool for feature recognition. On the basis of studying recognition method for image of electret condenser microphone, this paper presents an improved BP learning, algorithm for recognizing the image features using neural network, and the method for adjusting momentum vector and learning rate is discussed. Compared with the inspecting result of traditional methods, such as those based on Muhilayer Perceptron (MLP) or Radial - Basis Function neural network ( RBF), the ameliorated BP neural network recognition method presented in this paper has a relatively simple network structure and less input information redundancy for irregular feature recognition, the accuracy of the neural network output indexes is improved obviously. The average correct rate of microphone image recognition reaches to 92.7% and the recognition speed meets the requirement of online real - time detection. Theoretical evaluation and simulation experiments show that the improved BP neural network can effectively detect the image feature of electret condenser microphone. The paper provides a new approach for studying irregular image feature recognition.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3