两群微粒群优化算法及其应用  被引量:23

Two sub-swarms particle swarm optimization algorithm and its application

在线阅读下载全文

作  者:陈国初[1,2] 俞金寿[2] 

机构地区:[1]上海电机学院电气学院 [2]华东理工大学,自动化研究所,上海,200237

出  处:《控制理论与应用》2007年第2期294-298,共5页Control Theory & Applications

基  金:上海市教委自然科学科研项目(05vz01)

摘  要:针对微粒群优化算法容易陷入局部极值的缺陷,提出两群微粒群优化算法.通过对5种常用测试函数进行测试和比较,结果表明两群微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率明显提高.然后将两群微粒群优化算法用于催化裂化装置主分馏塔轻柴油95%点软测量建模,通过与实际工业数据对比,表明该软测量模型具有高的精度、好的性能和广阔的应用前景.In order to improve optimization performance of particle swarm optimization algorithm(PSO), a new two subswarms particle swarm optimization algorithm(TSPSO) is proposed in this paper. Then, both TSPSO and PSO are used to resolve five well-known and widely used test functions' optimization problems. Results show that TSPSO has greater efficiency and better performance than PSO. TSPSO is also applied to train artificial neural network(NN)to construct a practical soft-sensor for the 95%-point light diesel oil in a main fractionator of fluid catalytic cracking unit(FCCU). The obtained results and comparison with actual industrial data indicate that the proposed method is feasible and effective in soft-sensor for the 95%-point light diesel oil.

关 键 词:微粒群优化算法 优化 催化裂化装置:轻柴油95%点 软测量 

分 类 号:TP11[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象