检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学城市建设与安全环境学院,江苏南京210009
出 处:《化学工程》2007年第4期38-41,共4页Chemical Engineering(China)
基 金:国家自然科学基金重点资助项目(29936110)
摘 要:建立了一个基于人工神经网络方法的基团键贡献模型,用于预测烷烃闪点。该模型既考虑了分子中基团的特性,又考虑了基团之间的连接性(化学键)。以16种烷烃基团键作为神经网络的输入参数,研究了44种烷烃的闪点与分子结构之间的相关性。结果表明,闪点预测值与实验值符合良好,绝对平均绝对误差6.0 K,绝对平均相对误差2.15%,优于传统基团贡献法所得结果。该方法的提出不仅揭示了烷烃闪点与分子结构之间的定量关系,而且为工程上提供了一种预测有机物闪点的新的有效方法。A group bond contribution model using artificial neural networks was established to predict the flash points of alkanes. Information of group property and connectivity in molecules was contained in the model, and 16 group bonds were used as input parameters of neural networks to study the correlation of molecular structures with flash points of 44 alkanes. The results show that the predicted flash points are in good agreement with the experimental data, with the absolute mean absolute error being 6.0 K, and the absolute mean relative error being 2.15%, which are superior to those of traditional group contribution methods. The method proposed can be used not only to reveal the quantitative relation between flash points and molecular structures of alkanes but also to predict the flash points of organic compounds for chemical engineering.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222