检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《武汉大学学报(工学版)》2007年第2期129-132,138,共5页Engineering Journal of Wuhan University
基 金:航天"十五"预研基金资助项目(编号:413160203)
摘 要:在并行多处理器系统中,通常用有向无环图(DAG)表示任务之间的依赖关系.为了提高该任务模型调度算法的性能,基于粒子群优化算法,提出一种新的调度算法.算法将任务高度和粒子位置作为任务优先级,使用表调度策略生成有效的调度方案,在满足任务间依赖关系的条件下,使所有任务的完成时间最小.仿真实验结果表明,与遗传算法相比,所提出的算法提高了解的质量和收敛速度,特别适合于规模较大的多处理器任务调度.The directed acyclic graph(DAG) is app ied to the parallel multiprocessor system to present the dependence relationship between tasks. A novel task scheduling algorithm is proposed based on particle swarm optimization(PSO)so as to enhance the performance of task scheduling approach in multiprocessor system. It tasks the task height and the particle position as the task priority value, and applies the list scheduling technique to obtain a feasible schedule so that task precedence relationships are satisfied and the total execution time of all tasks is minimized. Simulation results demonstrate that the proposed algorithm, compared with the genetic algorithms, increases both in terms of the the quality of solution and converge speed and especially fits to solve multiprocessor scheduling problem with a number of tasks and processors.
关 键 词:粒子群优化算法 表启发式技术 多处理器系统 任务调度
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3