检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学理学院应用数学系,西安710071
出 处:《电子与信息学报》2007年第5期1035-1037,共3页Journal of Electronics & Information Technology
基 金:国家部委预研基金(51487020203DZ0103)资助课题
摘 要:Daubechies等人(2004)首先提出了图像的变分分解和小波软阈值之间的联系。小波软阈值会对图像边缘造成过度光滑,使重构图像在边缘附近产生吉布斯震荡现象,为克服该问题,本文用具有更高正则性的分段n次多项式小波阈值和指数阈值做图像分解,得到图像分解的变分泛函的近似最小值。当n越大时,图像分解的变分问题的近似最小值越逼近精确最小值。这样得到了图像的变分分解和修正小波阈值之间的联系。实验结果表明该模型用于图像分解的有效性。The relation of variational image decomposition and wavelet soft threshold was discovered recently by Daubechies and Teschke. A major issue is that thresholded coefficients entail oversmoothing of edges, coefficients set to zero yield Gibbs oscillations in the vicinity of edges, while coefficients remain corrupted generate artifacts. To overcome this problem, piecewise n-degree polynomial threshold and exponential threshold are used to decompose images in this paper, both of which have higher regularity. The near-minimizer of the variational function of image decomposition is obtained. Here, n may be chosen as any positive number and the bigger the degree n is, the better the approximation quality is. Thus, the connection of image variational decomposition and the modified wavelet threshold are obtained. Experimental results demonstrate the effectiveness of the model.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222