回采工作面瓦斯涌出BP神经网络分源预测模型及应用  被引量:120

Different-source gas emission prediction model of working face based on BP artificial neural network and its application

在线阅读下载全文

作  者:朱红青[1] 常文杰[1] 张彬[1] 

机构地区:[1]中国矿业大学(北京)资源与安全工程学院煤炭资源与安全开采国家重点实验室,北京100083

出  处:《煤炭学报》2007年第5期504-508,共5页Journal of China Coal Society

基  金:国家自然科学基金重点资助项目(50134040)

摘  要:基于回采工作面瓦斯涌出分源涌出,利用人工神经网络分别预测开采煤层、邻近煤层、采空区3种来源的瓦斯涌出量;因3种来源瓦斯涌出量的影响因素不同,为了避免不相关因素的干扰,提高预测精度,确定整个预测体系由开采层、邻近层、采空区等3个瓦斯涌出量预测神经网络组成,对每个涌出源分别建立神经网络预测模型;最后采用Matlab中BP神经网络算法,针对实际矿井进行应用,预测误差小.Based on the different-source gas emission quantity prediction theory, the BP nerve network was applied to predict respectively the gas emission quantity from the mining coal seam, neighboring coal seam and goaf of working face. Because the gas-emission influencing factors of the mining coal seam, neighboring coal seam and goaf of working face were different, three gas emission prediction neural network models were established respectively to avoid the interference of the irrelevant factors and to increase the prediction accuracy. The gas emission prediction neural network model of the mining coal seam was made up of three layers and nine parameters. The prediction model of the neighboring coal seam was made up of three layers and eight parameters, and the prediction model of the goaf of working face was made up of three layers and four parameters. The different-source gas emission prediction model can improve prediction accuracy greatly. The BP neural network arithmetic of Matlab software was adopted and put into application in coal mine, and the prediction error can satisfy the demand in application.

关 键 词:回采工作面 瓦斯涌出量 BP人工神经网络 分源预测 

分 类 号:TD712.5[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象