检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学应用数学系,辽宁大连116024
出 处:《Journal of Mathematical Research and Exposition》2007年第2期253-263,共11页数学研究与评论(英文版)
摘 要:In this paper we consider the enumeration of subsets of the set, say Dm, of those Dyck paths of arbitrary length with maximum peak height equal to m and having a strictly increasing sequence of peak height (as one goes along the path). Bijections and the methods of generating trees together with those of Riordan arrays are used to enumerate these subsets, resulting in many combinatorial structures counted by such well-known sequences as the Catalan nos., Narayana nos., Motzkin nos., Fibonacci nos., Schroeder nos., and the unsigned Stirling numbers of the first kind. In particular, we give two configurations which do not appear in Stanley's well-known list of Catalan structures.本文考虑了由最高峰的高度为m,并且峰的高度沿着Dyck路严格递增的所有Dyck路组成的集合,即集合Dm的子集的计数问题.利用双射、生成树以及Riordan阵的方法来对集合Dm的一些子集进行计数,得到了一些以经典的序列如Catalan数、Narayana数、Motzkin数、Fibonacci数、Schroder数以及第一类无符号Stirling数来计数的组合结构.特别地,我们给出了两个新的Catalan结构,它们并没有明显地出现在Stanley关于Catalan结构的列表中.
关 键 词:Generating tree Riordan array Catalan numbers Schroeder numbers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145