检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机床与液压》2007年第5期94-97,共4页Machine Tool & Hydraulics
摘 要:动态系统优化是过程设计、操作及控制的一个重要课题,但有效地求出其全局最优解是困难的。现今各种算法求解此问题时需要增强算法的优化性能和算法的简洁性;而遗传算法求此类问题时需要进行离散化,本文为此提出用粒子群复形法求解此类问题。此算法是在充分考虑粒子群算法与复形法的特性,保持复形法的迭代机理,同时加入粒子群算法基本思想,再结合几何分点、梯度与信赖域等的基础上提出的;以克服粒子群算法与复形法易陷局部极值的不足。性能测试的结果表明:该算法简便、可行、高效;最后将所提出的算法用于Park-Ram irez生物反应器补料流率的动态优化,也取得了满意的效果。Dynamic system optimization is an important problem in process design, manipulation and control, but it is difficult to effectively find out the global optimization solution. The existed problems of the algorithm used now are that the algorithm is easy to be trapped into local minima in optimizing model and the manipulation of the algorithm is not convenienL Aiming at these problems, a new algorithm, complex particle swarm optimization algorithm was developed, which combines the advantages of method of complex (MC), particle swarm optimization (PSO), geometric point, gradient and the confidence region method and overcomes the disadvantage that PSO and MC are easy to be trapped into local minima in optimizing multimodal function. The result of a case study shows that CPSO is convenient, feasible, and efficient. When applied to dynamic optimizing feed-rate of Park-Ramirez bioreactor, satisfying results were gotten.
关 键 词:动态优化 复形法 粒子群算法 Park—Ramirez 生物反应器
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15