检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《仪器仪表学报》2007年第5期870-874,共5页Chinese Journal of Scientific Instrument
摘 要:本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免了复杂的计算,有利于提高故障诊断模型的实时性。Support vector machine (SVM) is an effective fault diagnosis method, but a number of data may lead to a more complicated structure of SVM classifier. By integrating the characteristics of kernel principal component analysis (KPCA) and SVM, a new fault diagnosis method is presented in this paper. The new method was applied to continuous stirred tank reactor(CSTR) model and the results show that this new method avoids complex computation and improves the real-time property of the fault diagnosis model.
关 键 词:核主元分析(KPcA) 支持向量机分类(SVC) 故障诊断
分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158