检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原科技大学系统仿真与计算机应用研究所,山西太原030024
出 处:《计算机工程与科学》2007年第6期51-54,共4页Computer Engineering & Science
基 金:教育部重点科技项目(204018)
摘 要:以保证全局收敛的随机微粒群算法SPSO为基础,本文提出了一种改进的随机微粒群算法——GAR-SPSO。该方法是在SPSO的进化过程中,以轮盘赌选择机制下的遗传算法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。通过对五个多峰的测试函数进行仿真明:在搜索空间维数相同的情况下,GAR-SPSO收敛率及收敛速度均大大优于SPSO。Based on the stochastic particle swarm optimization algorithm that guarantees global convergence, an improved stochastic particle swarm optimization algorithm named GAR-SPSO is proposed. During the evolution of SPSO, the optimal particles produced by the genetic algorithm of roulette wheel selection substitute for the stopping particles, and take part in the evolution of the next generation. Through the experiments of five multi-modal test functions, the result of simulation proves that the speed of convergence and the rate of convergence for GAR-SPSO are better than SPSO in case of the same dimension of the search space.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222