检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Physics,University of Kuopio,P.O.Box 1627,FIN-70211 Kuopio,Finland [2]Department of Mathematical Sciences,University of Delaware,Newark,DE 19716,USA
出 处:《Journal of Computational Mathematics》2007年第3期350-367,共18页计算数学(英文)
摘 要:In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media.In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117