检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:关振群[1] 刘邦志[1] 顾元宪[1] 于文会[1]
机构地区:[1]大连理工大学工业装备结构分析国家重点实验室工程力学系,大连116024
出 处:《计算力学学报》2007年第3期257-263,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(10421002);国家杰出青年科学基金(10225212)资助项目
摘 要:提出一种有效的三维实体四面体有限元网格质量优化方法以满足有限元分析对网格质量的要求。对薄元分解法进行改进,改进的薄元分解法更全面地考虑了各种劣质单元类型,能够对三维实体网格剖分中产生的各种类别的孤立劣质单元进行有效的分解;将改进的薄元分解法与Laplacian光顺优化方法相结合以解决某些网格剖分算法如推进波前法和Delaunay三角化方法产生的非孤立劣质单元问题。经过实例检验,本文提出的四面体单元网格优化算法健壮有效、易于实现,能够显著提高最差单元的质量。To meet the requirements of finite element analysis on the mesh quality, an effective mesh optimization method is presented in this paper to improve the quality of tetrahedral mesh. The sliver de- composition method is extended to deal with all kinds of isolated poor-quality tetrahedral elements generated by various meshing method for three-dimensional solids. A new mesh smoothing method combining the extended sliver decomposition method and the Laplacian smoothing method is proposed to solve the problem of clustering poor-quality elements frequently occurred in some mesh generation algorithms such as Advancing Front Technique (AFT) and Delaunay Triangulation. Computational experiments show that the method proposed is robust, efficient and easily implemented in practical applications, the quality of the worst elements is improved noticeably.
关 键 词:Laplacian光顺 薄元分解 四面体单元 网格优化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222