检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王文[1] 芮国胜[1] 王晓东[1,2] 邢福成[1]
机构地区:[1]海军航空工程学院电子工程系 [2]海军潜艇学院,青岛266042
出 处:《中国图象图形学报》2007年第6期961-969,共9页Journal of Image and Graphics
摘 要:基于小波变换的图像处理方法是目前的主流方法,而对图像特征的多尺度统计建模则是图像压缩、去噪、分割、纹理分析与合成等统计应用的关键问题。本文综述了图像的多尺度统计模型,包括边缘分布模型以及层内、层间和混合相关模型,分析了各模型的优缺点,给出了对各种相关模型捕捉系数间相关性能力的归一化量测。最后,简单介绍了基于多尺度几何分析的统计图像模型,并对多尺度统计建模的前景进行了展望。The algorithms based on wavelet transform have been very popular in image processing applications such as image compression, denoising, segmentation, texture analysis and synthesis. Multiscale statistical models for image characteristic are the key problems for these applications. This paper reviewed the statistical models for images in wavelet domain. Firstly, the marginal models for non-Gaussian distribution of image wavelet coefficients were studied, then the dependency models including interscale, intrascale and composite dependencies were analyzed, and the paper indicated the advantages and disadvantages of the models and gave normalized measures for the abilities of different dependency models to capture the dependencies between coefficients. At last, image statistical models based on multiscale geometric analysis were introduced in brief, and the possible future work is pointed out.
关 键 词:小波 多尺度统计模型 非高斯 相关模型 互信息 多尺度几何分析
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28