基于ICA-MJE和SVM的虹膜特征提取与识别  被引量:3

Feature extraction and recognition of iris based on ICA-MJE and SVM

在线阅读下载全文

作  者:何振红[1] 吕林涛[1] 

机构地区:[1]西安理工大学计算机科学与工程学院,陕西西安710048

出  处:《计算机应用》2007年第6期1505-1507,共3页journal of Computer Applications

摘  要:提出了一种新的虹膜特征提取与识别方法。对虹膜纹理采用最大判别熵的独立分量分析(ICA-MJE)实现特征提取,通过支持向量机(SVM)完成模式匹配。与Gabor小波的方法比较,在编码长度和编码时间方面有明显地改进。实验结果表明,该算法能更好地提高虹膜的识别率并能够有效地应用于身份识别系统中。A new method for iris feature extraction and recognition was proposed in this paper. Feature was extracted with independent component analysis by maximizing J-divergence entropy (ICA-MJE), and then Support Vector Machine (SVM) was used to match two iris codes. Compared with that of Gabor wavelet method, the size of an iris code and the processing time of the feature extraction were significantly reduced. Experimental results show that the developed system with high iris recognition rate could be used for a personal identification system in a more efficient and effective manner.

关 键 词:虹膜识别 特征提取 独立分量分析 支持向量机 判别熵 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象