基于改进BP神经网络的地下水环境脆弱性评价  被引量:20

Modified BP neural network-based groundwater environmental vulnerability evaluation

在线阅读下载全文

作  者:李梅[1] 孟凡玲[2] 李群[1] 黄强[1] 

机构地区:[1]西安理工大学水利水电学院 [2]华北水利水电学院资源与环境学院,河南郑州450011

出  处:《河海大学学报(自然科学版)》2007年第3期245-250,共6页Journal of Hohai University(Natural Sciences)

基  金:国家"973"重点基础研究发展规划项目(G1999043608);陕西省重点实验室项目(02JS37)

摘  要:地下水环境脆弱性具有模糊特性,现有的地下水环境脆弱性评价方法普遍采用加权评分法和模糊数学方法.加权评分法在评价因素权重的确定上人为性较大,并且该方法不能反映各评价因素指标值的连续变化对地下水环境脆弱性的影响;模糊数学方法在评价因素权重的确定和隶属度函数的构建上存在着不足.为此,建立了地下水环境脆弱性的改进BP神经网络模型.黄淮平原宁陵县的应用结果表明,改进BP神经网络法训练速度快、精度高,能较好地解决非线性的模式识别问题,如实地评价地下水环境的脆弱性.The weight grade method and fuzzy mathematic method are commonly used for groundwater environmental vulnerability evaluation due to its fuzziness. However, the weight grade method is affected by some artificial factors in determining the weights of different evaluation factors, and the method cannot reflect the influences of the continuous changes of evaluation factors on the vulnerability of groundwater environment. Meanwhile, the fuzzy mathematic method is of some disadvantages in determining the weights of evaluation factors and establishment of the function of subordination degree. Thus, a modified BP neural network model was established for groundwater environmental vulnerability evaluation. The application of the model to Ningling County in Huang-Huai Plain shows that the modified BP neural network is of fast speed and high accuracy in nonlinear mode identification and can provide correct evaluation of groundwater environmental vulnerability.

关 键 词:地下水环境 脆弱性评价 改进BP神经网络 模式识别 

分 类 号:X824[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象