检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学数学与计算机科学学院,福建福州350002
出 处:《福州大学学报(自然科学版)》2007年第3期376-380,共5页Journal of Fuzhou University(Natural Science Edition)
基 金:福建省自然科学基金资助项目(2006J0029);福建省高新计划研究重点项目(2005H028)
摘 要:现有的离群点检测算法运用于规模较大的数据集时,其时间效率和检测效果通常不够理想.通过对离群点分布特征的分析,在计算每个数据点到其kth最近邻对象距离的同时,结合其k最近邻的分布情况,给出一种改进的离群点度量方法.基于上述思想构造的离群点检测算法DokOF能够处理混合属性数据.实验表明,该算法具有良好的适用性和有效性.Existing algorithms for outlier detection are not efficient when facing large datasets. With analysis of features of outliers in datasets, we rank each point on the basis of its distance to its kth nearest neighbor and the distribution of its k nearest neighbors. A novel algorithm, called DokOF(outlier factor based on distribution ofk nearest neighbors), is presented, which can deal with mixed attribute data. Results of experiments demonstrate promising availabilities of this approach.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.92.96