基于单邻点多波段预测的高光谱图像无损压缩算法  被引量:2

Lossless Compression of Hyperspectral Images Based on Single Neighbor Multi-Bands Prediction

在线阅读下载全文

作  者:苏令华[1] 万建伟[1] 

机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073

出  处:《遥感学报》2007年第2期166-170,共5页NATIONAL REMOTE SENSING BULLETIN

基  金:国防预研基金(编号:41321090202)

摘  要:提出了一种基于聚类-单邻点、多波段预测-熵编码的高光谱数据无损压缩方法。根据谱向特征,进行高光谱图像矢量聚类。对各个分类,采用单个空间位置邻点、多个波段作为预测数据,训练预测系数,进行三维预测。残差采用Golomb-Rice编码。实验证实了算法的有效性。Applications for hyperspectral image data are still in their infancy as handling the significant size of the data presents a challenge for the user community. Data compression becomes a key problem. Based on clustering, predicting with single neighbor and self position in multi-bands, and entropy coding, a lossless compression method of hyperspectral images is presented. According to spectral structure, the spectra of a hyperspectral image are clustered by pixels. In every cluster, single spatial neighbor and the same spatial position of the current pixels are used for prediction. Using neighbors in various directions, four predictors are achieved. For each spatial position, one of the predictors is selected to perform the three dimension prediction. The residuals are entropy-coded using the Rice coding. The achieved compression ratios are compared with those of existing methods. The results show that the algorithm is an efficient method.

关 键 词:高光谱图像 聚类 预测 无损压缩 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象