检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073
出 处:《遥感学报》2007年第2期166-170,共5页NATIONAL REMOTE SENSING BULLETIN
基 金:国防预研基金(编号:41321090202)
摘 要:提出了一种基于聚类-单邻点、多波段预测-熵编码的高光谱数据无损压缩方法。根据谱向特征,进行高光谱图像矢量聚类。对各个分类,采用单个空间位置邻点、多个波段作为预测数据,训练预测系数,进行三维预测。残差采用Golomb-Rice编码。实验证实了算法的有效性。Applications for hyperspectral image data are still in their infancy as handling the significant size of the data presents a challenge for the user community. Data compression becomes a key problem. Based on clustering, predicting with single neighbor and self position in multi-bands, and entropy coding, a lossless compression method of hyperspectral images is presented. According to spectral structure, the spectra of a hyperspectral image are clustered by pixels. In every cluster, single spatial neighbor and the same spatial position of the current pixels are used for prediction. Using neighbors in various directions, four predictors are achieved. For each spatial position, one of the predictors is selected to perform the three dimension prediction. The residuals are entropy-coded using the Rice coding. The achieved compression ratios are compared with those of existing methods. The results show that the algorithm is an efficient method.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117