检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuan Yuan LIU Zhen Ting HOU
机构地区:[1]School of Mathematics,Central South University
出 处:《Acta Mathematica Sinica,English Series》2007年第7期1289-1296,共8页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China(No.10171009)
摘 要:This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.
关 键 词:convergence rate Markov chains QUEUES polynomial ergodicity geometric ergodicity
分 类 号:O226[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42