Explicit Convergence Rates of the Embedded M/G/1 Queue  被引量:1

Explicit Convergence Rates of the Embedded M/G/1 Queue

在线阅读下载全文

作  者:Yuan Yuan LIU Zhen Ting HOU 

机构地区:[1]School of Mathematics,Central South University

出  处:《Acta Mathematica Sinica,English Series》2007年第7期1289-1296,共8页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(No.10171009)

摘  要:This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.

关 键 词:convergence rate Markov chains QUEUES polynomial ergodicity geometric ergodicity 

分 类 号:O226[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象