检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电工技术学报》2007年第6期148-153,共6页Transactions of China Electrotechnical Society
基 金:国家自然科学基金(50077007);高等学校博士点专项基金(20040079008)资助项目。
摘 要:利用支持向量机(SVM)和遗传算法(GA)建立24个不同的混合模型来对夏季24点负荷进行滚动预测。通过追加最新的负荷和天气信息来更新混合模型的输入,滚动预测下一小时负荷。利用SVM建立预测模型,利用GA自动选择SVM模型的参数。经过GA优化后的最终SVM模型用于滚动预测下一小时的负荷。研究实例表明,GA简化了SVM参数选择,优化了SVM模型;滚动预测效果要明显好于常规预测方法。This paper presents hybrid models of support vector machines (SVM) and genetic algorithm (GA) to forecast summer 24 hourly loads. These models were applied to rollingly forecast the loads respectively with their inputs updated by newly obtained information of the hourly. SVM were applied to build a series rolling forecasting models. Parameters in the SVM models were automatically selected by GA to simplify the complex modeling. These optimized models were then used to forecast the rest unknown hourly loads of the day. A studied case shows that the forecasting errors of the dynamical models is significantly lower than that of the compared methods.
分 类 号:TM730[电气工程—电力系统及自动化] F123.9[经济管理—世界经济]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.159