A Content-Centric Organization of the Genetic Code  被引量:3

A Content-Centric Organization of the Genetic Code

在线阅读下载全文

作  者:Jun Yu 

机构地区:[1]Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China

出  处:《Genomics, Proteomics & Bioinformatics》2007年第1期1-6,共6页基因组蛋白质组与生物信息学报(英文版)

摘  要:The codon table for the canonical genetic code can be rearranged in such a way that the code is divided into four quarters and two halves according to the variability of their GC and purine contents, respectively. For prokaryotic genomes, when the genomic GC content increases, their amino acid contents tend to be restricted to the GC-rich quarter and the purine-content insensitive half, where all codons are fourfold degenerate and relatively mutation-tolerant. Conversely, when the genomic GC content decreases, most of the codons retract to the AUrich quarter and the purine-content sensitive half; most of the codons not only remain encoding physicochemically diversified amino acids but also vary when transversion (between purine and pyrimidine) happens. Amino acids with sixfolddegenerate codons are distributed into all four quarters and across the two halves; their fourfold-degenerate codons are all partitioned into the purine-insensitive half in favorite of robustness against mutations. The features manifested in the rearranged codon table explain most of the intrinsic relationship between protein coding sequences (the informational content) and amino acid compositions (the functional content). The renovated codon table is useful in predicting abundant amino acids and positioning the amino acids with related or distinct physicochemical properties.The codon table for the canonical genetic code can be rearranged in such a way that the code is divided into four quarters and two halves according to the variability of their GC and purine contents, respectively. For prokaryotic genomes, when the genomic GC content increases, their amino acid contents tend to be restricted to the GC-rich quarter and the purine-content insensitive half, where all codons are fourfold degenerate and relatively mutation-tolerant. Conversely, when the genomic GC content decreases, most of the codons retract to the AUrich quarter and the purine-content sensitive half; most of the codons not only remain encoding physicochemically diversified amino acids but also vary when transversion (between purine and pyrimidine) happens. Amino acids with sixfolddegenerate codons are distributed into all four quarters and across the two halves; their fourfold-degenerate codons are all partitioned into the purine-insensitive half in favorite of robustness against mutations. The features manifested in the rearranged codon table explain most of the intrinsic relationship between protein coding sequences (the informational content) and amino acid compositions (the functional content). The renovated codon table is useful in predicting abundant amino acids and positioning the amino acids with related or distinct physicochemical properties.

关 键 词:genetic code CODON GC content purine content 

分 类 号:Q311[生物学—遗传学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象