检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程学院102教研室,西安710025
出 处:《核技术》2007年第7期615-618,共4页Nuclear Techniques
摘 要:在神经网络识别γ能谱的应用中,针对BP算法极易陷入局部极小、收敛速度慢的缺点,根据粒子群优化算法具有全局寻优的特点,本文将PSO与BP算法结合起来形成一种训练神经网络的新算法——混合PSO-BP算法。将该算法应用到γ能谱识别中,克服了BP算法极易陷入局部极小的缺点,并且训练好的网络具有很好的泛化能力,识别正确率为100%。实例表明,混合PSO-BP算法用于γ能谱识别是非常理想的、有效的。In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence., whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In, this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra.
分 类 号:TN711[电子电信—电路与系统] TP316.8[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.21