检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学材料与冶金学院
出 处:《材料科学与工艺》2007年第3期316-318,共3页Materials Science and Technology
基 金:国家自然科学基金资助项目(50672014);国家杰出青年基金资助项目(50425413)
摘 要:为了减少实验量,降低成本,利用人工神经网络的原理,选取温度、颗粒尺寸、压坯密度为输入量,产物的孔隙度为输出量,建立了反映自蔓延高温合成反应参数与产物孔隙特性内在关系的模型.研究表明,该模型可以对选定工艺条件下产物的孔隙度进行良好的预测,预测结果在合理的误差范围内.说明建立的反应参数与孔隙特性的关系模型是可靠的,可以通过此模型优化反应参数.In order to decrease experimental work and cost, artificial neural network theory was used to build a model reflecting the relationship between process parameters of self-propagation high-temperature synthesis and porosity characteristic of products. In this model, temperature, particle size and green density were as input parameters and porosity of reacted products was as output parameter. The porosity of reacted products was well predicted at selected process parameters by this model. The predicted error lied at rational range, which indicated that the built model was reliable and could be used to optimize process parameters.
分 类 号:TB39[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229