检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄立新[1] 李双蓓[1] 周小军[1] 刘勇[1]
出 处:《玻璃钢/复合材料》2007年第4期6-10,共5页Fiber Reinforced Plastics/Composites
基 金:广西自然科学基金项目(0339013);广西大学科学研究基金博士启动项目(DD030015)
摘 要:本文采用Timoshenko和Goodier处理固端边界条件的两种方法,探讨均布荷载作用下正交各向异性悬臂梁固端边界条件对位移的影响。根据Lekhniskii各向异性弹性理论应力解答,推导在第二种固端边界条件下的位移分量的解析解,并在文献已有部分结果的基础上求出第一种固端边界条件下的x方向位移解析解,然后得出两种固端边界条件下的位移差别。数值算例中将得出的位移解析解与有限元数值解进行比较,两者吻合良好,然后讨论材料各向异性程度、跨高比和材料弹性主轴方向对位移差别的影响。The effects of the fixed-end boundary conditions on the displacement of an orthotropic cantilever beam subjected to uniform load are analyzed by way of Timoshenko and Goodier 's method of treating fixed-end boundary condition. According to one kind of the fixed-end boundary condition, the displacement expressions are obtained by using Lekhniskii's anisotropic elasticity solutions of stresses. Based on the part solution of another fixedend boundary condition obtained in reference, the displacement expression in x direction is also derived and then, the displacement difference under the two kinds of fixed-end boundary conditions is presented. In the numerical example the analytical displacement results are compared with those calculated by the finite element method (FEM) and agreement between them is satisfactory. Several sets of numerical results are presented to show the effects of anisotropy ratios, the span-to-thickness and principal directions of elasticity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15