检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机科学与技术学院,湖北武汉430074
出 处:《华中科技大学学报(自然科学版)》2007年第7期5-7,共3页Journal of Huazhong University of Science and Technology(Natural Science Edition)
摘 要:针对基于单层SOM神经网络的入侵检测系统计算量大、误报率高的问题,利用SOM网络中相似模式激活神经元的物理位置邻近的特点,根据输入模式的类型,对激活的神经元进行划分,并把记录的基本特征和推导特征结合起来,对记录进行分类.研究结果表明,较小的特征子集能使系统更快地对数据进行分类,与传统的利用单层SOM神经网络方法相比,该方法计算量小、误报率低.The characteristic that similar patterns activate the neighboring neurons is used to classify the records. The activated neurons were classified according to the types of the records. Using appropriate combination of basic features and derived features is proposed to reduce false positive rate and computation of single-layer SOM-based intrusion detection system. The result shows that the smaller subset of features can make the system classify the records faster. This method has the advantage of less computation and lower false positive rate comparing that of using traditional single layer SOM neural network.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38