粒子群优化算法研究进展  被引量:70

Survey of Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:倪庆剑[1] 邢汉承[1] 张志政[1] 王蓁蓁[1] 文巨峰[1] 

机构地区:[1]东南大学计算机科学与工程学院,南京210096

出  处:《模式识别与人工智能》2007年第3期349-357,共9页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金(No.90412014);江苏省高校自然科学基金(No.04KJD520098)

摘  要:粒子群优化(PSO)算法作为一种仿生进化算法,是受到自然界生物群体行为机制的启发而提出的.本文首先介绍 PSO 算法的基本原理和工作机制.然后着重就 PSO 算法的理论和应用研究现状进行综述,包括 PSO 算法的改进、PSO 算法的参数设置、PSO 算法的收敛性、PSO 算法与其它算法的融合以及 PSO 算法在优化领域的典型应用,并进一步分析它们的研究重点和发展方向.最后是关于 PSO 算法面临的问题和研究展望,提出 PSO 算法研究中值得探讨的一些课题.The particle swarm optimization (PSO) algorithm is an evolutionary algorithm that simulates the mechanism of biological swarm social behavior . The models of bird flocking and swarm actions are firstly introduced, and the fundamental characteristics and the working mechanisms of PSO algorithm are also analyzed . Then the recent progress in theory of PSO algorithm is reviewed, which are related to the improvement of PSO algorithm, the parameter selection in PSO algorithm, the convergence features of PSO algorithm, and the merging mechanism to other meta-heuristic optimization algorithms. In addition, several typical application areas of PSO algorithm are surveyed respectively, which include continuous function optimization, neural network training, optimization of power system and optimization in electromagnetics. Finally, some suggestions on future trends and existing problems related to PSO algorithm are discussed and concluded.

关 键 词:群智能 粒子群优化(PSO) 优化问题 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象