检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申文明[1] 王文杰[2] 罗海江[2] 张峰[2] 刘小曼[2] 熊文成[2]
机构地区:[1]中国科学院地理科学与资源研究所 [2]中国环境监测总站,北京100029
出 处:《遥感技术与应用》2007年第3期333-338,共6页Remote Sensing Technology and Application
基 金:科技部十五攻关项目资助(2003BA614A-06-04)
摘 要:以河北唐山为研究区,应用Landsat ETM+影像数据和GIS数据,对决策树分类技术和传统计算机自动分类方法进行了比较。研究表明:决策树与传统自动分类方法相比,分类精度提高了18.29%,Kappa系数提高0.1878。在地形起伏的山区,应用DEM及其衍生数据等GIS数据作为辅助数据可以提高分类精度19.52%,Kappa系数提高0.281;反射率影像分类效果比原始DN值影像的分类效果好,分类精度提高15.86%;缨帽变换在压缩数据量的同时,分类精度有所降低。In this article, the author compared decisin tree classification technology with classic automaticclassification technologies using Landsat ETM + image data and GIS data of Tangshan City in Hebei. The result of this research showed: accuracy of decision tree classification compared with classic automatic classification technology was improved about 18. 29%, Kappa coefficient was increased by 0. 1878; classification accuracy was improved about 19. 52% when DEM and its derivative data were used as ancillary data in the mountainous area, Kappa coefficient was increased by 0. 281~ the classification accuracy was improved by 15.86% when the DN (Digital Number) values were converted to at-satellite reflectance values; tasseled cap transformation could cause classification accuracy to be reduced appreciably accompanied by compression of data amount.
关 键 词:遥感影像 决策树 计算机自动分类 空间数据挖掘 土地利用/土地覆盖
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28