检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院遥感应用研究所遥感科学国家重点实验室,北京100101 [2]辽宁师范大学城市与环境学院,辽宁大连116029
出 处:《干旱区地理》2007年第4期573-578,共6页Arid Land Geography
基 金:国家自然科学基金资助项目(40571117);遥感科学国家重点实验室科研资助基金项目(KQ060006)
摘 要:采用2002年MODIS 1km的全年NDVI时序数据对新疆及周边地区进行了土地覆盖分类,在分类的过程中重点强调了稀疏植被覆盖区域,这些区域具有潜在荒漠化的趋势。介绍了一种针对不同土地覆盖类型并能重点突出稀疏植被的分类方法,这种方法较好地综合了季节性影响因素和多变的自然条件影响因素。从16天合成的优化过的时序NDVI图像上,通过分析物候变化,可以获得较好的分类结果。将具有潜在荒漠化趋势的区域模型化研究以后,研究结果表明新疆及周边地区40万km2的土地有潜在荒漠化的趋势。由于MODIS NDVI数据覆盖范围较大,并且对植被的生长变化有较高的敏感度,所以它可以被有效地应用于监测大尺度环境变化和荒漠化进程。Detecting desertification with remote sensing is an important task for the North west of China and other arid areas in the world. In this paper, MODIS 1 km NDVI time series data of 2002 was used to classify land cover type in and around Xinjiang Province. During the classification, sparse vegetation areas which are at risk of deserti- fication are emphasized. A classification method, which is adapted to various land cover type and makes sparse vegetation emphasis, is introduced in this paper. This method better synthesizes seasonal influence factors and vari- able factors of natural conditions. From optimized time-series NDVI images from 16-day composites, better classification results can be achieved through analyzing seasonal changes. After modeling areas at risk of desertification, research results indicate that 0.4 million km2 around and in Xinjiang are potential desertification regions. Because of the larger cover extent and sensitivity to vegetation growth of MODIS NDVI imagery, it can be effectively applied to detect large scale environmental variances and desertification.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.214