检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高艳萍[1] 于红[1] 崔新忠[1] 姜国兴[1] 王美妮[1]
出 处:《农业工程学报》2007年第7期162-165,共4页Transactions of the Chinese Society of Agricultural Engineering
基 金:辽宁省教育厅攻关项目(05L090)
摘 要:农村稻区水稻螟虫发生量与多种气候因素相关,各因素之间存在相互作用,是非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特性。传统的BP网络在训练时易陷入局部极小点从而导致训练时间长、收敛速度慢,采用Levenberg-Marquardt优化算法(简称L-M算法)能克服其缺点。在MATLAB中应用L-M算法对辽宁盘锦田间稻区进行水稻螟虫发生量的仿真预测,试验结果表明L-M优化算法的预测精度和收敛速度明显提高,为稻区防控虫害和精确喷药提供参考,具有实用价值。Rice stem borer is a pest, pest emergence volume is related to different climatic factors. The prediction of pest emergence volume is a problem of multi-variable and non-linearity, The artificial neural network is a nonlinear optimization tool. However, the training of neural network by conventional back-propagation (BP) method has intrinsic vulnerable weakness in slow convergence and local minima, L-M optimized algorithm not only possesses the advantages of artificial neural network, but also offsets disadvantages caused by the BP- neural network. On the basis of this, the project selected L-M optimized algorithm as modeling method for prediction of pest emergence volume in rice planting area. The experimental results by MATLAB show that this method is effective and more accurate than BP neural network, and it can be applied for prediction of pest emergence.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229