哲思逻辑——一个形而上学内容的公理体系  被引量:22

Metaphysical logic:an axiomatic system concerning metaphysical content

在线阅读下载全文

作  者:杜国平[1] 

机构地区:[1]南京大学现代逻辑与逻辑应用研究所,江苏南京210093

出  处:《东南大学学报(哲学社会科学版)》2007年第4期43-46,共4页Journal of Southeast University(Philosophy and Social Science)

基  金:国家社科基金项目(02CZX0080);教育部人文社会科学重点研究基地重大项目"逻辑哲学重大问题研究"(05JJD720.40002)成果之一

摘  要:在经典命题逻辑的系统内,增加一个一元算子*,通过定义引入两个一元算子2和△,可以建立一个经典命题逻辑的扩充系统——哲思逻辑系统。在该扩充系统内,有遵守矛盾律和排中律的经典否定算子,有遵守矛盾律而不遵守排中律的构造性否定算子,有不遵守矛盾律而遵守排中律的弗协调否定算子,还有既不遵守矛盾律又不遵守排中律的辩证否定算子。通过引入关于*的一个形式语义,可以证明哲思逻辑系统具有可靠性和完全性。在哲思逻辑中,A和A之间是矛盾关系,A和2A之间是反对关系,A和△A之间是下反对关系,A和*A之间是差等关系。所以,哲思逻辑又可以称为对当关系逻辑。Metaphysical logic system (MLS), an extended system of classical propositional logic, can be obtained from the classical propositional logic system by adding an unary operator and introducing two unary operators ▽and △ by definition. In the MLS, there are four kinds of negation operators: the classical negation operator which obeys both law of contradiction and law of excluded middle, the constructive negation operator which obeys law of contradiction but not law of excluded middle, the paraconsistent negation operator which obeys law of excluded middle but not law of contradiction, and the dialectical negation operator which obeys neither law of contradiction nor law of excluded middle. By introducing a formal semantics about , the soundness and completeness of MLS can be proved. In the MLS, there is a contradictory opposition between A and A, a contrary opposition between A and ▽A , a subcontrary opposition between A and △A, and a subaltern opposition between A and A. Therefore, metaphysical logic can be also termed oppositional logic.

关 键 词:否定 弗协调 直觉主义 

分 类 号:B812[哲学宗教—逻辑学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象