检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南师范大学数学与信息科学学院,新乡453007
出 处:《系统科学与数学》2007年第4期481-487,共7页Journal of Systems Science and Mathematical Sciences
摘 要:主要在自反和严格凸的且具有一致G■teaux可微范数的Banach空间中研究了非扩张非自映射的粘滞迭代逼近过程,证明了此映射的隐格式与显格式粘滞迭代序列均强收敛到它的某个不动点.Let E be a reflexive Gateaux differentiable norm, and K be and strictly convex Banach space with a uniformly a nonempty closed convex subset of E which is also a sunny nonexpansive retract of E. Assume that T : K → E is a nonexpansive mapping with F(T) ≠0, and f : K → K is a fixed contractive mapping. The implicit iterative sequence {xt} is defined by xt = P(tf(xt) + (1 - t)Txt) for t ∈ (0, 1). The explicit iterative sequence {xn} is given by xn+1 = P(αnf(xn) + (1 - αn)Txn), where αn ∈ (0, 1) satisfies appropriate conditions and P is nonexpansive retraction of E onto K. It is shown that {xt} and {xn} strongly converges to a fixed point of T.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.206.193