森林类型遥感识别人工自组织神经树模型初探  被引量:2

A Study on Remote Sensing Recognition of Artificial Self-organization Neural Tree Model of Forest Type

在线阅读下载全文

作  者:全志杰[1] 褚泓阳[1] 王立宏 毛晓利[1] 李元科[1] 

机构地区:[1]西北林学院林学系

出  处:《西北林学院学报》1997年第1期66-69,共4页Journal of Northwest Forestry University

基  金:国家"八五"科技攻关项目

摘  要:运用森林类型遥感目视识别的70个样本,训练人工自组织神经树模型,然后对10个“未知”样本进行预测。结果表明,该模型的识别、容错能力较强,综合了遥感图像专家目视判读与计算机自动识别的优点,使判读过程更加精确和简练,而且省工、省时、省经费。A model of artificial self-organizing neural tree was trained by 70 sample books of forest type recognized by visual remote sensing recognization. The trained model was then evaluated by the recognition of 10 unknown samples. The results showed the abilities of recognition and fault tolerance of the model were strong. It combines the advantages of visual interpretation of remote sensing photoes with automatic computer recognition, which makes the recognition not only more accurate and concise, but also time, money and labour saving. It opens up a new way for remote sensing recognition of object.

关 键 词:森林类型 森林遥感 人工自组织 神经树模型 

分 类 号:S771.8[农业科学—森林工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象