集成视觉特征和语义信息的相关反馈方法  被引量:4

Relevant Feedback Method by Integration of Visual Features and Semantics

在线阅读下载全文

作  者:施智平[1] 李清勇[2] 史俊[1] 史忠植[1] 

机构地区:[1]中国科学院计算技术研究所智能信息处理重点实验室,北京100080 [2]北京交通大学计算机与信息技术学院,北京100044

出  处:《计算机辅助设计与图形学学报》2007年第9期1138-1142,共5页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金重点项目(60435010);国家自然科学基金(90604017;60675010);国家"八六三"高技术研究发展计划(2006AA01Z128);国家"九七三"重点基础研究发展规划项目(2003CB317004);北京市自然科学基金(4052025).

摘  要:为了有效地利用图像检索系统的语义分类信息和视觉特征,提出一种基于Bayes的集成视觉特征和语义信息的相关反馈检索方法.首先,将图像库的数据经语义监督的视觉特征聚类算法划分为小的聚类,每个聚类内数据的视觉特征相似并且语义类别相同;然后以聚类为单位标注正负反馈的实例,这显著区别于以单个图像为单位的相关反馈过程;最后分别以基于视觉特征的Bayes分类器和基于语义的Bayes分类器修正相似距离.在图像库上的实验表明,只用较少的反馈次数就可以达到较高的检索准确率.The paper proposes a Bayes-based relevant feedback approach by integrating visual features and semantics to effectively make use of semantics and visual features in content-based image retrieval systems. First, the data of the image database are divided into small clusters by semantic supervised clustering algorithm, so the data of each cluster are similar both in visual features and in semantics. Then, on the relevant feedback, users mark the positive and negative samples, in representation of clusters instead of images. At last, we use Bayes classifiers based on visual features and based on semantics respectively to adjust retrieval similarity distance. Experimental results on an image database and a video database show that a few cycles of the relevant feedback by the proposed approach can improve the retrieval precision significantly.

关 键 词:相关反馈 图像检索 聚类 BAYES 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象