检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学理学院,甘肃兰州730050 [2]兰州理工大学设计艺术学院,甘肃兰州730050
出 处:《兰州理工大学学报》2007年第4期168-171,共4页Journal of Lanzhou University of Technology
基 金:甘肃省自然科学基金(3ZS042-B25-006)
摘 要:根据薄壳非线性动力学理论,由扁球薄壳大挠度基本方程,在周边固定夹紧的条件下,用修正迭代法求出二次近似解析解,把大挠度解作为扁球薄壳的初挠度处理,推导出扁球薄壳在大挠度下的非线性动力学基本方程。利用扁球面壳的非线性动力学变分方程和协调方程,在夹紧固定的边界条件下,用Galerkin方法得到一个含二次、三次项非线性受迫振动微分方程.通过求Melnikov函数,给出可能发生混沌运动的条件.通过数字仿真绘出平面相图,证实混沌运动的存在.On the basis of nonlinear dynamical theory and according to control equations of flat spherical shallow shells under large deflection, the secondary approximate analytic solution was obtained by using a modified iteration method in the condition of fixedly clamped perimeter. Then, taking the large deflection solution as initial deflection of the flat spherical shells, the nonlinear dynamic control equations of the latter were derived in the case of large deflection. Employing nonlinear dynamic variational equation and compatible equation with boundary condition of clamped fixing, a nonlinear differential equation of forced vibration with second and third-order terms was obtained by using Galerkin approach. By means of finding the Melnikov function, a condition was given to the probable occurrence of chaotic motion. The existence of the latter was justified by the phase plane plotted with numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28