矿井监控图像中空列车的识别  被引量:7

Recognizing Empty Trains in Coalmine Surveillance Images

在线阅读下载全文

作  者:孙继平[1] 陈伟[1] 王福增[1] 唐亮[1] 马凤英[1] 李郴[1] 

机构地区:[1]中国矿业大学煤炭资源与安全开采国家重点实验室,北京100083

出  处:《中国矿业大学学报》2007年第5期597-602,共6页Journal of China University of Mining & Technology

基  金:高等学校博士学科点专项科研项目(20050290010)

摘  要:基于井下空列车与其他物体的几何形状差别,提出空列车监控图像的识别算法.运用圆形结构元素对监控图像进行形态学的先开启、后闭合的操作,用Canny边缘检测算子来检测图像的边缘,并对边缘的图像进行变换分析,突出了空列车图像边缘的直线性质.结果表明:形态学操作有效地减弱了其他对象的边缘,得到比较满意地空列车图像的直线性质的边缘;在不同监控对象的图像的Radon变换域中的特征最大值比Hough变换域中的特征最大值有更好的可分离性.Radon变换作为识别算法中的变换方法,可识别了煤矿井下红外监控系统中的空列车图像.Based on the difference of the geometrical shape between the empty trains and other objects. A recognition algorithm of the empty-trains-image was proposed. The monitoring images were opened and closed using a circle structural element in morphological in the algorithm, and their edges were detected with Canny operator. With the transform analysis of the edges images, the linear characteristics of the edges of the empty-trains-images were outstood. The results show that the linear edges of the empty trains were gotten satisfactorily, while that of the other objects were weakened efficiently, and the separability of the diagnostic maximum of the different monitored object in Radon transformation field is better than that in Hough transformation field. The Radon transform can recognize the empty-trains-image in the coal mine infrared monitoring system.

关 键 词:空列车图像 边缘检测 RADON变换 HOUGH变换 

分 类 号:TD6[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象