检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院,长沙410082
出 处:《控制与决策》2007年第9期1027-1031,1043,共6页Control and Decision
基 金:国家自然科学基金项目(60375001);高校博士点基金项目(20030532004)
摘 要:针对混沌优化对初始值敏感、搜索精确解效率低等不足,研究一种基于竞争-协作式信息交互的并行混沌优化(ICPCO)算法.ICPCO算法采取并行混沌迭代机制,在每一次迭代搜索之后,根据并行优化解分布状况不同,分别采取竞争或协作式信息交互再次寻优.描述ICPCO算法思想和实现步骤,分析其收敛性和优化性能.仿真实验表明,ICPCO算法不仅具有全局搜索能力,而且以信息交互方式提高了优化效率和搜索精度,算法收敛,稳定性增强.For the problem that chaotic optimization is sensitive to initial values and suffers from slow convergence velocity around optimum and poor efficiency for accurate optimum, a parallel chaotic optimization algorithm based on competitive/cooperative inter-communication (ICPCO) is proposed. In the proposed algorithm, each variable is mapped to several chaotic variables called parallel chaotic system, and competitive/cooperative inter-communication between parallel variables is employed for research in accordnce with distributing-status of parallel variables. Both framework and algorithmic implementation of the proposed algorithm are introduced. Optimization performance and convergence of ICPCO are analyzed. Simulations demonstrate that this algorithm has better performance over other parallel chaotic optimization.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112